(-12x^2-9x)/x=-4x-3

Simple and best practice solution for (-12x^2-9x)/x=-4x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-12x^2-9x)/x=-4x-3 equation:



(-12x^2-9x)/x=-4x-3
We move all terms to the left:
(-12x^2-9x)/x-(-4x-3)=0
Domain of the equation: x!=0
x∈R
We get rid of parentheses
(-12x^2-9x)/x+4x+3=0
We multiply all the terms by the denominator
(-12x^2-9x)+4x*x+3*x=0
We add all the numbers together, and all the variables
(-12x^2-9x)+3x+4x*x=0
Wy multiply elements
(-12x^2-9x)+4x^2+3x=0
We get rid of parentheses
-12x^2+4x^2-9x+3x=0
We add all the numbers together, and all the variables
-8x^2-6x=0
a = -8; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·(-8)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*-8}=\frac{0}{-16} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*-8}=\frac{12}{-16} =-3/4 $

See similar equations:

| 2x+13=3x-18=90 | | 6-m=10-4 | | 3x+x/17=65 | | 10x^2-15x-48=0 | | -4c-6-+7c=-2 | | 5x+10=10.5x+0.5 | | 2x+12°=2x+10° | | I)5x-5=2x+16 | | 18=(-3x-6) | | b=82b | | 18=3(-3x-6 | | 11x+4=(5x+8) | | (-4)=3x-5 | | 3(2d+5)=63 | | w(5w)=3 | | 6(s-3)=-48 | | 18.5w+6.5w-2.8w=149.10 | | d+3=28 | | 428w=6420 | | 8(g-4)=32 | | k+562=1834 | | x+25.5=30 | | -4c-6+7c=21 | | y/61=453 | | r-345=743 | | 10h+4+2h=40 | | 40=10h+4+2h | | A=3.14×4r^2 | | 7k+4-3k=24 | | 3e+5=20 | | 15d^2–49d=0 | | 15d2–49d=0 |

Equations solver categories